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KRIGING AND COLLOCATION - A COMPARISON

A, DERMANIS

SUMMARY

A simple comparison of the Kriging estimation techniques with the me-
thod of collocation widely used in geodesy is carried out. Similarities and
differences between the two methods are pointed out and explained on the
basis of their corresponding underlying stochastic assumptions.

1. INTRODUCTION

A collection of methods for prediction or interpolation of function va-
Tues originating in geostatistics and called kriging (after Krige) have been
presented by Blais (1982).

Kriging is an example of the developement of similar ideas in different
fields of applied science where they appear under particular names thus gi-
ving rise to a scientific babel which contributes to the lack of interdisci-
plinary communication. The other example, of course, is the familiar to the
geodetic world method of collocation.

Here we shall give a comparison between collocation and the various
kriging techniques with the exception of some non-linear extensions of the
latter. The familiar extensions of collocation where the data are more gene-
ral than point-values of an underlying function will also be excluded from
such a comparison.

Both methods follow the principle of unbiased minimum error variance
prediction when the underlying function is considered as a second order sto-

chastic process with known, or estimated, covariance function. However a
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deterministic interpretation is also possible, where both methods are simply
viewed as interpolation methods.

We refer only to Blais (1982) where further references to the literatu-
re can be found.

2. STANDARD PREDICTION TECHNIQUES AND COLLOCATION

Let fi, i=1,2,...,n be a set of known realizations of respective ran-
dom variables. An estimate f of the realization f of a respective new random
variable, correlated to the former ones, can be uniquely obtained if the fol-

lowing three criteria are combined:

i) Linearity
1
ii) Unbiasedness
E{(f} = E{f} => E{e} = 0 (2)
for the prediction error
e= f-Ff (3)
iii) Minimum error variance
= E{€2} = minimum . (4)
Using matrix notation the derived prediction is
F=oc.. cilof (5)
£ ff

in the particular case of zero-mean random variables

vV

E(fh = 0 = E{f} =0, E{ft = 0 . (6)

Here f is the vector of the fi values and C

f

£ Cff the covariance matrices
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of the respective subscript vectors.

In the most general case of random variables with non-zero means
E{fi} = om, # 0, E{f} =m# 0, E{f} = m# 0 (7)

the prediction becomes

Fom o= Co c;.i (f - m) : (8)

It must be noted that equation (5) can also be derived by a priori se-
tting b = 0 in the linearity condition (1). In such a case however, equ-
ation (8) cannot follow as a generalization of (5); the assumption of a not
necessarily zero additive term is in this case essential as it will be shown
in the following.

The realization of the prediction requires the knowledge of the means
and covariances for all related random variables.

Collocation in its most simple form is a straightforward application of
equation (8) to the case where f& and f are the values of a stochastic pro-
cess f(x), i.e.,

foo= fix.), f = fx) (9)

at points X, and x of its domain of definition. In the most general case, not
considered here, fi’ f can be values resulting from the application of appro-
priate functionals on the stochastic process f(x). The elements of the covari-
ance matrices Cff, Cff are computed from the known covariance function e{(x,x'}
of the stochastic process f(x), while the means m, m from the corresponding
known mean function m(x).

For Gaussian processes the prediction } given by equation (8) coincides
with the conditional expectation of f given the values f}, which is an unbia-
sed minimum error variance prediction of f without the restriction of linea-
rity in equation (1).

When the stochastic process f(x) has a non-zero but unknown mean functicn
equation (8) cannot be directly applied. In practice, the required mean values
m, m are replaced by estimates %, m resulting from some estimate %(x) of the
unknown mean function m(x).

The usual way of obtaining such an estimated mean function is to foliow
the procedure called trend removal where the unknown trend function m(x) is
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restricted to be of the form
3 T B T
m(x) = ) a 0 (x) = a @(x) = e(x) a (10)

i.e., a linear combination of some selected base functions wk(x). The optimal
values of the coefficients a_ are obtained by solving the least squares pro-

k
blem (g <n)
- T -1 .
f = 0a+g, g C.e g = minimum (11)
ff
where
- - T, _
mij = mj( i)’ E{g} = 0, E{g g} Cff . (12)

The solution of (11) is well known from the least squares adjustment theory

T 1

-1 gy-1 o T
Cep ©)7 O Cop f (13)

>

(0

and consequently the estimates to be used in equation (8) are

wo= e a = e 07c o)t oTerl f (14)
- - Tl gy-1 gTe-1

3. THE KRIGING SYSTEM

In the Kriging approach conditions (ii) and (iii) of the previous sec-
tion stiltl hold, but the linearity condition (i) is replaced by

T . (16)

i") f o= g A, fy o= A
Here b=0 a priori and this is an important difference. In the case of zero
means, it follows anyway that b=0, as seen from equation (5) and there is
no difference between Kriging and collocation. However, in the case of non
zero means the standard prediction according to collocation gives

B -1
b = m- CeCeem # 0 (17)
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as can be seen from equation (8).
In kriging where a priori b=0, combination of (i'), (ii) and (iii)
gives the so called kriging system

cff A - Cff = am (18)
m A = m (19)
or
Ces m 1 A Cff
= (20)
L mT 0 -a m

where a is a Lagrange multiplier.
The solution of the kriging system is

1

To-l -1, T -1 - -1
)7 Cop m) Crpm + Cop Cpo (21)

A={(m Cff m m-—Cff

and replacing into (16) the prediction % becomes

A ~ _ T _1 ~
f-sm = Cff Cff (f - sm) (22)
where we have set
N~ T ~-1 -1 T -1

Comparison of equation (22) with equation (8) leads to the following
conclusion: When the means are non-zerc and known, kriging gives results
which do not coincide with the standard prediction technique which in geode-
sy appears under the name of collocation. In fact, the known mean function
m(x) is replaced by a "scaled" version 8 m(x), the scale factor 8 being de-
termined by a particular trend removal technique on the available data fi .
The last statement follows from the fact that equation (23) is the solution
to the trend removal-least squares problem

f = ms+gqg, gT C;% g = minimum (24)

However, the stochastic assumption in equation (24) is
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E{f} = ms (25)

in discrepancy with the assumption E{f} = m used in the derivation of the

kriging system.

4. STANDARD KRIGING

Standard kriging follows by adding the assumption that
m(x) = m = constant (26)
with m unknown. The kriging system (20) now becomes

5
(27)

where & is an n x1 vector with all elements equal to one. If one starts with

conditions (i'), (ii), (iii) he arrives at the system

(28)

which can be shown to be equivalent to (27). The solution of either (27) or
(28) is

N o= Cof Cep + (8 Cip 87 (1-8" Cgp Cp) Crr B (30)
and replacing into (16) we obtain for the prediction

}'-—r;? = C;fc;% (f—r;75) (31)
where

mo- (@ Cro) e cpp f (32)
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is the solution of the trend removal - least squares problem
_ T -1 .
f = dm+g, g Cff g = minimum . (33)
It follows that standard kriging is equivalent with the collocation
prediction with estimated means according to equation (8), (14) and (15)

when only one base function is taken in equation (10), namely wl(x) = 1 and

al=m .

5. UNIVERSAL KRIGING

Universal kriging follows by adding the assumption that the mean fun-
ction m(x) has the form of equation (10) with unknown coefficients a, -
Since

m = Oa, m= @ a (34)

the kriging system becomes in this case

Cegh-aba = Cp (35)
al oA - a' g . (36)
The above equation can be replaced by the sufficient condition
mT A= o (37)
or
Cff 0 A cff
= (38)
OT 0 -0 a 0]
The solution of (38) is
_ -1 -1 T o=1 o1 T

and replacing into (16) we obtain for the prediction
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F-0a = ¢ Cp(f-0a) (40)
where we have set

N T -1 o\-1 T -1 .

a = (0 Cff o) "0 Cff f (41)
From equation (41) follows that a is the solution of the trend removal -
least squares problem

- T .-1 L.
f = 0a+tg, g Cff g = minimum (42)

Ccmparison of equations (40), (41) with equations (8), (13) shows that
universal kriging gives identical results with the standard prediction (co-
1location) with estimated means, where the mean function is first estimated
from the available data f& by means of a trend removal technique of the type
of equations (10) and (11).

6. CONCLUSIONS

As far as their basic assumptions are concerned, kriging differs from
collocation in the form of the linearity condition for the predicted value.
Collocation allows an additive constant to the linear combination of the
available values.

As far as results of prediction are concerned, standard kriging and
universal kriging coincide, under similar assumptions on the form of the
unknown mean function, with collocation using estimated means, where the
mean function is estimated by a preceding trend removal technique. On the
other hand, when the mean function is known, the results of kriging differ
from those of collocation. The known means of collocation are replaced by
scaled means where a scale factor is estimated by a preceding trend removal
technique. This difference between kriging and collocation is a direct con-
sequence of the difference in the linearity conditions mentioned above.

The above comparisons are independent of any assumptions about the na-
ture of the covariance function c¢(x,x') of the stochastic process f(x).

In collocation it is usually, but not necessarily, assumed that the

covariance function is homogeneous and isotropic, i.e.,
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e(x,x') = e(||x-x"1) (43)

In the so called transitive kriging a homogeneousbut not isotropic covariance
function is assumed, i.e.,

e(x, x') = e(x'- x) . (44)

The non-linear extensions of the kriging method have not been considered
since they cannot be compared with the linear method of collocation.
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