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Abstract 
 
The calculation of invariant deformation parame-
ters, entering in the constitutional equations of 
crustal dynamics, requires information on the ge-
ometry of the crust in the study region, which is 
continuous in both the time and spatial domain. The 
use of continuously observing GPS stations pro-
vides geodetic data which are practically time-
continuous and must be only spatially interpolated. 
A strategy is developed for the treatment of dense 
series of horizontal coordinates from a regional 
GPS network, which are typically exhibiting a time-
linear behavior. The role of the choice of reference 
system is examined for the removal of trend before 
the spatial interpolation as well as the determination 
of the motion of the region as whole with respect to 
the ITRF or of the relative motion of tectonically 
homogeneous sub regions. Rigorous formulas are 
presented for various horizontal deformation pa-
rameters and their intrinsic time derivatives, without 
the usual infinitesimal approximations. Finally the 
problem of quality assessment for the derived pa-
rameters is investigated completely ignoring the 
questionable formal statistical characteristic of the 
original geodetic data. A realistic numerical exam-
ple demonstrates the suggested techniques, involv-
ing spatial interpolation by the classical finite-
element method. A software package in standard C 
language has been developed in order to implement 
the proposed algorithms. 
 
1 Introduction 
 
Although crustal deformation is naturally a three-
dimensional (3D) phenomenon, there is a long tra-
dition of a two-dimensional (2D) treatment of the 
relevant data, primarily by the finite element 
method using horizontal triangles within which de-
formation is assumed to be homogeneous. This re-
striction is partly due to the difficulty of obtaining 
high quality leveling data, or nowadays in the lower 
quality of heights from GPS observations. The main 
reason though is that our discrete positional infor-

mation is fundamentally 2D as restricted to the sur-
face of the earth. Interpolation can provide continu-
ous information in the surface or horizontal sense, 
but extension to the 3D unknown deformation re-
quires an extrapolation in the surface-normal or 
height sense, which is not justified for the available 
data. 

The derivation of horizontal deformation, ignor-
ing height information is somewhat unnatural since 
it is not concerned with the deformation of the ma-
terial points constituting the crust, but rather with 
the deformation of their projections on a horizontal 
reference surface. The results are more realistic 
when the surface is essentially flat and height varia-
tions do not alter height differences in the area, i.e. 
the whole area is uplifted or down-lifted as a whole. 
Only in this case horizontal deformation is the hori-
zontal trace of the actual 3D deformation. 

A realistic treatment must study the deformation 
of the 2D natural earth surface as embedded in 3D 
space and provide the “trace” of the unknown 3D 
deformation in the tangent plane for each surface 
point. This generalized treatment will be presented 
elsewhere. For the time being we mention an obvi-
ous extension of the finite element method in the 
“right direction”. In Dermanis (1994) we have pre-
sented a version of the finite element method where, 
instead of coordinates the horizontal distances of 
the triangle sides at epochs are used. If the horizon-
tal distances are replaced by spatial distances taking 
also height information into account, more realistic 
deformation parameters can be computed, which are 
referring to the tangential rather than the horizontal 
trace of the actual 3D deformation.  

In any case, here we will follow the traditional 
restriction of the horizontal treatment, since our aim 
is to update some existing computational techniques 
(Dermanis & Livieratos, 1983, Dermanis & Rossi-
kopoulos,1988, Rossikopoulos, 2001), in a direction 
which takes into account the nature of presently 
available data from permanent GPS stations moni-
toring a deforming area. The daily network solu-
tions, apart from some missing or obvious outlier 
days, manifest a linear evolution in time, even for 
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long periods up to 2 years. This is not surprising, 
since the motions of “floating” tectonic plates are 
rotations around a fixed axis. Furthermore they are 
so slow that the displacements, circular in principle, 
appear to be linear in the “infinitesimal” time inter-
val of few years, especially for points far away from 
the plate-rotation axis, which may well be located 
outside the plate itself. The use of a “constant ve-
locity” model for the station coordinates as func-
tions of time provides a surplus of data that allows 
us to address the data quality assessment problem, 
completely ignoring the unrealistic (specially when 
derived from GPS observations) formal covariance 
matrices accompanying the daily network solutions. 
 
2 Horizontal Deformation Parameters  
 
Deformation is primarily described by the deforma-
tion function f , which relates the coordinates 

)( 0xfx  of any material point at some particular 

epoch t  to the coordinates 0x  of the same material 

point at some reference epoch 0t . In the differential 

equations of motion, which connect the deformation 
of a material body under external forces with its 
response characteristics (constitutional equations), 
the deformation function enters through its local 
linear approximation, the deformation gradient 

00 x

x

x

f
F . The linear mapping F  describes 

how each curve changes its spatial direction and 
rate of length variation, by mapping a tangent vec-
tor to a curve at epoch 0t  to the tangent vector to its 

new position at epoch t .The deformation gradient 
depends on the chosen reference systems. Under 
system changes described by Sxx~ , 000

~ xSx , 

the deformation gradient is represented by the new 

matrix T
0

~
SFSF . In order to get an insight into the 

nature of the deformation gradient independently of 
the coordinate systems involved, we will resort to 
the singular value decomposition (SVD)  

TF Q P  (1) 
 
where P , Q  are orthogonal matrices and  a di-
agonal matrix having diagonal elements the singular 
values i ii  of F . These are related to the di-
agonalization of two symmetric matrices, the right 
Cauchy strain matrix 
 

2T TC F F P P  (2) 
and the left Cauchy strain matrix 
 

2T TB FF Q Q . (3) 

Thus the columns of TP  are the eigenvectors of 

C , the columns of TQ  are the eigenvectors of B  

and the diagonal elements 2 2 2( )i ii ii  are the 

common eigenvalues of C  and B , arranged in 
order of magnitude from larger to smaller. Related 
to the SVD is the polar decomposition 
 

VRRUF , (4) 
 
which involves the right stretch matrix  
 

1/ 2TU P P C  (5) 
 
the left stretch matrix 
 

1/ 2TV Q Q B  (6) 
 
and the rotation matrix 
 

PQR T . (7) 
 

Most common in engineering applications is the 
use of the strain matrix 
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with eigenvalues )1( 2
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i , or its infinitesimal ap-

proximation  
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expressed in terms of the displacement gradient 
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in equation (9) the quadratic terms TJJ

2
1  are ne-

glected. 
It can be easily shown that under a change of ref-

erence frames the above matrices are replaced by 
T
0

~
SFSF , T

00
~

CSSC , TSBSB
~

, T
0

~
SRSR , 

TQSQ
~

, T
0

~
PSP  and . The only invari-

ants are the singular values ii

~
. The matrix P  

transforms the direction of the axes of the coordi-
nate system at epoch 0t  to the directions of the ei-

genvectors of C , which are physical invariants 
called principal directions. Points at these direc-
tions are displaced along the same directions so that 
their distances from the reference point change by 
factors i . After this deformation the area around 
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the reference point is rotated as described by the 
matrix R .  

In the horizontal treatment the SVD becomes 
 

( ) ( )Q PF R R  (11) 

 
explicitly 
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The singular values and the angle P , computed 

by the well known solution of the 2D diagonaliza-

tion problem 2( ) ( )P PC R R  are 
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where 2
21

2
1111 FFC , 2

22
2

1222 FFC , 12C  

11 12 21 22F F F F . If the strain matrix is used then  
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Instead of the singular values which are scale 

factors along the principal direction, more appealing 
to the engineering visualization of deformation 
seem to be the dilatation  (percentage of area 
change) and shear , which relates to the distortion 

of a square into an oblique parallelogram with bases 
along the same straight lines, skewed by an angle 
having  as its tangent. 

A shear along the x-axis is represented by the 

shear matrix  
 

10

1
 (19) 

 
and a shear in the direction with angle  by the 

matrix  
 

)()( RR . (20) 

 
The 4-parameters deformation gradient F  can be 

represented by a shear  in direction , a scale 
factor s  and an additional rotation by an angle  
 

)()()()( RRRRF ss . (21) 

 
Since 1||  and all orthogonal rotation matri-

ces have determinant 1 too, the scale factor is di-
rectly determined from the determinant 
 

21122211|| FFFFs F , (22) 

 
and is related to the singular values by 2 | |s F  

1 2| || || | | |TP Q  and  
 

21s . (23) 

 
The shear can then be determined from 
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and 
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To determine the direction of shear  we use the 

SVD of : 
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The diagonalization problem 

 
RMR 2TT   (27) 

 
gives 
 

2
2tan . (28) 

 
Comparison with the SVD of F  

 
( ) ( )sF R MR  

 ( ) ( )Q PR R  (29) 

 
establishes the relation 
 

P . (30) 

 
3 Propagation of Variances and 

Covariances 
 
Starting from the complete covariance matrix of the 
elements of the deformation gradient F  it is possi-
ble to compute covariance matrices for other de-
formation parameters in steps, as follows 

 

1 2{ , , } { , , }PF C  

 
utilizing at each step the following relevant partial 
derivatives: 
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where 11 22( ) / 2K C C  and 2 2
12B K C , 
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4 Interpolation of Displacements Using 

the Finite Element Method 
 
The simplest way to interpolate displacements de-
termined at the vertices of a control network, is by 
assuming that it is homogenous within properly 
formulated network triangles, serving as finite ele-
ments. The interpolation model has the form 
 

11 12

21 22

x

y

gJ JU X

gJ JV Y
. (34) 

 
The elements ikJ  of the displacement gradient 

matrix, which are constant within each triangle, are 
recovered from the known displacement values 
( , )i iU V  at the triangle vertices having coordinates 
( , )i iX Y , , ,i A B C , using the relations 
 

11
( ) ( ) ( )B C A C A B B A CY Y U Y Y U Y Y U

J
D

 

12
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J
D

21
( ) ( ) ( )B C A C A B B A CY Y V Y Y V Y Y V

J
D

 

22
( ) ( ) ( )C B A C A B B A CX X V X X V X X V

J
D

 

 (35) 
 
where 

( )( ) ( )( )B A C A C A B AD X X Y Y X X Y Y . (36) 

 
From the displacement gradient J , the deforma-

tion gradient F I J  can be computed, from 
which all relevant deformation parameters can be 
derived. The complete covariance matrix of the 
network velocities and coordinates can be used in 
order to compute the complete covariance matrix of 
the elements of F , by covariance propagation for 
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all triangles, and proceed on for the covariances of 
other deformation parameters. To perform the co-
variance propagation from the coordinates and dis-
placements to the elements ijF , we need the rele-
vant partial derivatives. In fact we need only those 
with respect to the displacements, since the ones 
referring to coordinates are too small to be of any 
practical importance. The required derivatives for 
this first step of covariance propagation 
( ,i iU V F ) are 
 

11 12 21 22[ ]

[ ]

T

T
A A B B C C

F F F F

U V U V U V
 

- - -
0 0 0

- - -
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- - -
0 0 0
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0 0 0

B C C A A B

C B A C B A

B C C A A B

C B A C B A

Y Y Y Y Y Y

D D D

X X X X X X

D D D

Y Y Y Y Y Y

D D D

X X X X X X

D D D

 (37) 
 
5 The Case of Linearly Moving 

Permanent GPS Stations 
 
In a permanent GPS network, daily or weekly solu-
tions provide coordinates which exhibit a linear 
trend with superimposed noise. Each separate sin-
gle-epoch solution is accompanied by a complete 
covariance matrix for all coordinates of all network 
points, which presumably reflect the attained accu-
racy, while coordinate estimates for different ep-
ochs are formally uncorrelated since they are com-
puted from different observations which are pre-
sumably uncorrelated. On the other hand such esti-
mate statistics are commonly recognized to be 
overoptimistic and therefore unrealistic, since un-
known biases affecting the observations are not 
taken into account. For this reason we propose to 
discard the available covariance matrices and to 
perform an independent variance-covariance com-
ponent estimation utilizing the residuals resulting 
after fitting a linear model to each point coordinate. 

Some simplifying assumptions are necessary to 
arrive to a computationally reasonable and efficient 
algorithm, which of course may be subject to criti-
cism. In any case we claim that at least they offer an 
attractive alternative to the use of the formal unreal-
istic variances and covariance coming from the 
network per epoch adjustments. Explicitly we as-
sume that network performance does not vary es-
sentially with time while different epoch estimates 
remain uncorrelated. The first assumption is sup-

ported from the analysis of coordinate series from 
daily solutions. For the second one we note that a 
small correlation is present between consecutive 
days. A refined procedure seeking also an estimate 
of this correlation will be the object of future work. 

We outline the suggested procedure taking into 
account only horizontal coordinates X , Y , the 
extension to three coordinates being straightfor-
ward. The linear trend model is 
 

0 0( , ) ( )
k iki k i k k i X tX X P t X U t t v  

0 0( , ) ( )
k iki k i k k i Y tY Y P t Y V t t v   (38) 

  
for network points kP , Mi ,,2,1 , at epochs it , 

Ni ,,2,1 , where 0kX , 0kY  are the initial coor-
dinates of point kP  at the chosen reference epoch 

0t  and kU , kV  the corresponding constant velocity 
components. We explicitly assume that 
 

0}{ XkivE , 0}{ YkivE , 

{ }
k i m j k mX t X t ij X XE v v , 

{ }
k i m j k mY t Y t ij Y YE v v , 

{ }
k i m j k mX t Y t ij X YE v v . (39) 

 
In the first iteration we use a common unknown 

variance 2
k m k m k mX X Y Y X Y km  and zero 

correlation between different coordinates, which 
allows separate linear regressions yielding residuals 
 

0
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k iX t k i k i kv X P t X t U  
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ˆˆ ( , )
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For each point kP the coordinate and velocity es-

timates are derived from the following algorithm 
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U

m
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2
ˆ tY k
k
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m
V

m
, 

0
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k k kX X U t , 0̂
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k k kY Y V t . (41) 
 

The residuals are utilized for the derivation of 
unbiased estimates 
 

1
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which constitute an estimate for the common co-
variance matrix for each epoch to be used in the 
second iteration: 
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In the second iteration the linear regressions are 

performed simultaneously ordering the data as fol-
lows 
 

1 1
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In the collective linear model b Ax v , the re-
siduals have covariance matrix of the form 

NC I . We utilize the estimate ˆ  and set  
 

2 ˆ{ } ( )T
NEC vv I  (46) 

 

including an accommodating variance factor 2  
and the adjustment is performed using a weight 
matrix  
 

1 1ˆ ˆ( )N N NP I I W I  (47) 
 
where 
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T
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W W
W
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. (48) 

 
It can be shown that the solution breaks down 

into individual linear regressions leading to the 
same estimates as in the first step. The only differ-
ence is in the covariance propagation step which is 
performed by first computing the estimate of the 
variance factor 
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and then the variances and covariances from 
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Note that the above formulas are greatly simpli-

fied when the reference epoch 0t  is chosen so that 
0t . The obtained velocity component estimates 

ˆ
kU , k̂V  at each network point kP  must be interpo-

lated to obtain a continuous velocity field 

0( )v v x , where 0 0 0[ ]TX Yx  and [ ]TU Vv  
from which the velocity gradient 
 

0
0

v
L

x
 (54) 

 
referring to the reference epoch 0t  can be calcu-
lated. The displacements u  between epoch 0t  and 
any other epoch t  are given by 0 0( , ) ( )t t t tu v  
and the displacement gradient is simply 

0 0 0( , ) ( )t t t tJ L . Thus the deformation gradient 
becomes 
 

0 0 0 0( , ) ( , ) ( )t t t t t tF I J I L . (55) 

 
Once the deformation gradient is calculated the 

deformation analysis can be performed as previ-
ously described. When the finite element method is 
used, instead of the displacements u  one may in-
terpolate the velocities v , in which case the result-
ing matrix is not J  but 0L . For this reason we have 
used the same symbols (U , V ) for both displace-
ment and velocity components, while the equations 
(35) for the computation of the elements of J  can 
be used for the computation of the corresponding 
elements of 0L . 

It is also possible to perform the deformation 
analysis for any pair of epochs 1t , 2t  considering 
that 
 

1
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Taking into account that for a “small” matrix  

1( )I I , we may use the approximation  
 

1 2 2 1 0( , ) ( )t t t tF I L . (57) 

 
The velocity gradient at any epoch t  is given by 
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 1
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and it can be used to derive the corresponding 
symmetric “stretch” or “rate-of-strain” matrix 
 

1
( )

2
TD L L  (59) 

 
and the antisymmetric “spin” matrix 
 

1
2

0
( )

0
T w

w
W L L , 12 21

2

L L
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6 A Numerical Example 
 
For a numerical illustration of the proposed meth-
odology, we consider a network of permanent GPS 
stations (fig. 1) covering a region separated in two 
parts by a fault. Coordinate time series have been 
simulated for a time span of two years, applying 
linear velocities of the order of some cm/year to the 
station coordinates. Moreover, two rigid transfor-
mations, linear with respect to time, with the same 
order of magnitude of the velocities, have been 
added to the data: a first one on the right (R) net-
work alone, to simulate a tectonic effect of that re-
gion with respect to the other; the second one on 
both networks, to simulate a reference frame effect. 
At the end, a realistic noise (of the order of some 
mm) has been added to the coordinates. 

We shall derive the motion (displacements in X , 
Y  and rotation) for the whole region, and each one 
of the separate parts (subregions) with respect to the 
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global reference system (WGS84 or ITRF) used in 
GPS data analysis, as well as the relative motion of 
one subregion with respect to the other. Within each 
subregion a deformation analysis is performed us-
ing the finite element interpolation method, which 
leads to estimates of deformation parameters and 
their standard deviations and correlation. These 
statistics are based on the previously described vari-
ance-covariance analysis and are independent from 
the unrealistic formal statistics derived within the 
adjustment of the GPS observations. 

The motion of a network covering a deforming 
region is derived by defining its corresponding 
“Tisserand” reference system, which best represents 
the network as a whole, by preserving the “center of 
mass” of the network points (considered as material 
points with unit mass) and by the vanishing of their 
relative angular momentum (Dermanis & Kotsakis, 
2005). In the planar case the original coordinates 
X , Y  are transformed into new coordinates X , Y  

by a (counter-clockwise) rotation  and displace-
ments Xd , Yd  (all functions of time) by requiring 
that  
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for the conservation of the center of mass and the 
vanishing of the relative angular momentum h , 
respectively. For linearly varying coordinates the 
solution is given by 
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Using the computed parameters ( )t , ( )Xd t , 
( )Yd t , the station coordinates within each subre-

gion can be transformed from the original global 
frame to the corresponding Tisserand frame, so that 
any common displacement and rotational trend is 
removed before performing the deformation analy-
sis. 

A noticeable property of such a reference system 
transformation (where a generally different time 
dependent transformation is performed on the coor-
dinates of each epoch), is that the property of linear 
coordinate variation is not preserved from a strictly 
theoretical point of view. In fact this linear model of 
reference epoch coordinates and constant velocities, 
so widely used (e.g. in the formulation of the ITRF) 
has no solid theoretical foundation. Despite com-
mon belief, there exists no such thing as an intrinsic 
(coordinate-free) linear in time deformation of the 
network! From a practical point of view though we 
may limit ourselves to small displacements and 
rotations, in which case we can use instead of (63) 
the approximation tt)(  (with 0 0 ) , where 
 

0
2
0

hd

dt S
. (71) 

 
with the same degree of approximation the dis-
placements are ( )X Xd t t d , ( )Y Yd t t d , with 
constant displacement velocities 

0
( )X

X U Y

d d
d m m

dt
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0
( )Y

Y V X

d d
d m m

dt
 (72) 

 
The values of the time derivatives , Xd , Yd  

characterize the motion of the subregion as a whole, 
as represented by its own Tisserand frame. The 
computed values for the two regions in the left (L) 
of the fault and in the right (R) of the fault as well 
as for the whole network (L+R) are presented in the 
following table 
 

 
Xd   

(m/y) 
Yd  

(m/y) 

 
( /y) 

L+R  0.0369  0.0067  –0.64 
L  0.0349  0.0102  –0.74 
R  0.0285  0.0353  –0.48 

R–L  –0.0064  0.0251  0. 26 

Table 1: Displacement components and angular velocity 
of network regions and subregions 

 
Of particular importance are the first row (L+R) 

which represents the motion of the whole region 
with respect to the global network, as well as the 
last one (R–L), which represents the relative motion 
of the right subregion with respect to the left one. 
The network of the whole region moves in a north-
east direction with a velocity of 3.75 cm/year (east-
ern component 3.7 cm/year - northern component 
0.7 cm/year) and rotates around its own mass center 
clock-wise with angular velocity of 0.64 /year. 

Considering Tisserand system of the left region as 

constant, the network of the right region moves in a 

north-west direction with a velocity of 2.6 cm/year 

(western component 0.6 cm/year - northern compo-

nent 2.5 cm/year) and rotates around its own mass 

center counter-clock-wise with angular velocity of 

0.26 /year.  
After the removal of the trend due to the defini-

tion of the reference frame the velocities of all sta-
tions, (each one referring to the Tisserand frame of 
its own subregion) are depicted in fig. 1. 
 

 

Fig. 1: The network of permanent GPS stations and the 
remaining velocities after the removal  

of trend due to the reference system definition 
 

pt 0X  

(m) 
0Y  

(m) 

U  

(mm/y) 

V  

(mm/y)

1 –11999.9176 –23000.0431 2.3 45.1 
2 –27000.0610 16999.9033 19.2 –28.8 
3 7999.9034 27000.0286 3.4 –43.2 
4 28000.0646 –17999.8997 –15.7 28.3 
5 3000.0107 –2999.9891 –9.2 –1.4 
6 –1999.9211 –34000.0047 –5.2 –20.5 
7 –32000.0370 15999.9259 –1.4 10.2 
8 7999.9281 31000.0184 4.1 22.5 
9 28000.0442 –18999.9351 20.5 –11.2 

10 –2000.0141 5999.9955 2.0 –0.9 

Table 2: Estimated reference-epoch coordinates and ve-
locity components 

 

point 0X  

(mm) 
0Y  

(mm) 
U  

(mm/y) 
V  

(mm/y) 

1 0.12 0.16 0.20 0.28 
2 0.11 0.12 0.19 0.20 
3 0.17 0.16 0.29 0.27 
4 0.13 0.17 0.23 0.29 
5 0.14 0.11 0.25 0.20 
6 0.17 0.11 0.30 0.20 
7 0.12 0.18 0.20 0.31 
8 0.17 0.13 0.29 0.23 
9 0.18 0.12 0.31 0.20 

10 0.16 0.13 0.28 0.22 

Table 3: Standard deviations of the estimated reference 
epoch coordinates and velocity components 
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The results of the finite element deformation 
analysis are listed in tables 4 and 5 and are depicted 
in figures 2 and 3. Figure 2 depicts the values of 
1 ( 1)ik , as the semi-axes of an ellipse compa-
red to a unit circle. The semi-axes are oriented ac-
cording to their computed directions (angle P  and 

90P ). The exaggeration factor is 60.25 10k . 
Figure 3 depicts the direction of maximal shear by 
an oriented (angle ) line segment having 610  
as its length. Dilatation  is depicted by a circle 
with radius 1R k  compared to a unit circle, 
with an exaggeration factor of 60.25 10k . 

The standard deviations and correlations of the 
deformation parameters are given in tables 6, 7 and 
8. In tables 7 and 8, the upper triangular part con-
tains the correlations between 1 , 2  and P , while 
the lower triangular part contains the correlation 
between ,  and . 
 

triangle 6
1( 1) 10  6

2( 1) 10  P  ( ) 

1-5-2 -0.862 -2.031  8.313
2-5-3 -0.526 -1.465 -16.303
3-5-4 0.083 -1.536 -13.623
4-5-1 -0.395 -2.240 6.335

6-10-7 0.841 0.489 2.178
7-10-8 1.010 0.659 66.990
8-10-9 0.838 0.482 -72.339
9-10-6 0.813 0.444 -20.763

Table 4: Principal extensions and their direction 

 

 

Fig. 2: Principal extensions and their directions. 

 

 

triangle 610 610   ( ) 

1-5-2 1.169 -2.893  53.313 
2-5-3 0.939 -1.991 61.303 
3-5-4 1.619 -1.454 58.623 
4-5-1 1.846 -2.635  51.335 

6-10-7 0.351 1.330 47.178 
7-10-8 0.351 1.669 111.990 
8-10-9 0.355 1.320 117.339 
9-10-6 0.370 1.257 65.763 

Table 5: Dilatation, maximum shear and its direction 
 

 

Fig. 3: Dilatation, maximum shear and its direction 

 

triang. 1
 

6( 10 )
2

 
6( 10 )

P
 

(deg)  

 
6( 10 )  

 
6( 10 )  

 

(deg)

1-5-2 0.012 0.010 0.360 0.015 0.017 0.360

2-5-3 0.009 0.008 0.412 0.012 0.013 0.412

3-5-4 0.016 0.006 0.249 0.018 0.017 0.249

4-5-1 0.006 0.013 0.265 0.015 0.015 0.265

6-10-7 0.012 0.007 1.278 0.014 0.014 1.278

7-10-8 0.013 0.007 1.150 0.016 0.013 1.150

8-10-9 0.009 0.013 1.203 0.016 0.015 1.203

9-10-6 0.012 0.007 0.964 0.014 0.014 0.964

Table 6: Standard deviations of the deformation 
parameters 
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  1 - 5 - 2 2 - 5 - 3 3 - 5 - 4 4 - 5 - 1   
  1  2  P  1  2  P 1  2  P 1  2     

1   0.14 0.59 0.36 0.22 -0.64 -0.72 0.07 0.03 -0.28 0.21 0.78 1  1 
5  0.16  0.63 -0.12 -0.15 -0.12 -0.13 -0.06 -0.23 0.25 0.85 0.45 2  5 
2  0.03 0.80  0.08 -0.25 -0.31 -0.54 -0.06 -0.29 0.04 0.75 0.70 

P  2 
2  0.09 0.09 0.24  0.08 0.19 0.15 0.24 0.30 -0.02 0.04 0.02 1  2 
5  0.46 0.17 -0.10 0.08  0.28 -0.02 0.75 0.83 -0.14 -0.41 0.30 2  5 
3  -0.44 -0.53 -0.31 -0.05 0.31  0.69 0.54 0.54 0.26 -0.18 -0.43 

P  3 
3  -0.49 -0.55 -0.47 0.24 -0.15 0.44  -0.04 0.29 0.68 -0.34 -0.54 1  3 
5  -0.43 -0.55 -0.53 -0.01 0.33 0.85 0.73  0.57 -0.21 -0.04 -0.00 2  5 
4  0.18 -0.12 -0.29 -0.36 0.75 0.54 0.06 0.49  -0.03 -0.52 0.22 

P  4 
4  0.22 -0.63 -0.67 -0.26 0.18 0.28 0.56 0.54 0.46  0.01 -0.03 1  4 
5  -0.55 0.59 0.70 0.33 -0.26 -0.06 0.02 -0.07 -0.48 -0.67  0.26 2  5 
1  0.32 0.82 0.70 -0.20 0.21 -0.43 -0.49 -0.51 0.22 -0.25 0.22  

P  1 
                
  1 - 5 - 2 2 - 5 - 3 3 - 5 - 4 4 - 5 - 1   

 

Table 7: Correlations between deformation parameters for the left sub-region 
 

  6 - 10 - 7 7 - 10 - 8 8 - 10 - 9 9 - 10 - 1   

  1  2  P  1  2  P 1  2  P 1  2  P    

6   0.01 0.60 0.39 0.28 0.77 -0.14 -0.71 0.60 0.13 -0.43 0.53 
1  6 

10  0.49  0.52 -0.52 0.02 0.19 -0.49 0.23 0.16 0.39 0.72 0.43 
2  10 

7  0.25 0.78  -0.35 0.39 0.45 -0.39 -0.22 0.44 0.35 0.13 0.44 
P  7 

7  0.39 -0.05 -0.46  -0.20 0.10 0.57 -0.61 0.14 -0.03 -0.73 0.24 
1  7 

10  0.70 0.20 -0.13 0.55  -0.20 0.36 0.10 -0.28 -0.05 0.01 -0.02 
2  10 

8  0.57 0.76 0.45 0.17 -0.01  -0.68 -0.55 0.76 0.07 -0.13 0.44 
P  8 

8  0.65 0.18 -0.05 0.60 0.85 0.04  -0.05 -0.47 -0.12 -0.40 -0.15 
1  8 

10  -0.53 -0.63 -0.42 -0.26 -0.00 -0.86 -0.31  -0.57 0.29 0.66 -0.66 
2  10 

9  0.44 0.60 0.44 0.24 -0.02 0.76 0.18 -0.76  -0.20 0.04 0.23 
P  9 

9  0.29 0.27 0.25 0.29 0.30 0.13 0.11 -0.00 -0.20  0.03 0.21 
1  9 

10  -0.44 0.26 0.37 -0.30 -0.39 -0.01 -0.63 0.29 -0.15 0.51  -0.27 
2  10 

1  0.24 0.67 0.44 0.21 0.22 0.44 0.43 -0.63 0.23 0.32 0.05  
P  1 

                
  6 - 10 - 7 7 - 10 - 8 8 - 10 - 9 9 - 10 - 1  

 
Table 8: Correlations between deformation parameters for the right sub-region 

 
 

Conclusions 
 
Despite some simplified assumptions on the vari-

ance-covariance structure of the data, a consistent 

and rigorous approach has been formalized to infer 

network deformations from continuous time series 

of coordinates. The proposed approach allows also 

the evaluation of both the accuracies and the corre-

lations of the estimated parameters.  

The numerical example shows that by the pro-

posed empirical approach, a realistic estimate of the 

network covariance matrix is possible. The Tisse-

rand approach, applied to the linear trends estimated 

from the original coordinate series, provides the 

estimate of the global motion of a region (reference 

frame effects) as well as the relative motion of two 

regions (relative tectonic effects).  

The estimated standard deviations and correla-

tions of the deformation parameters provide useful 

information in the deformation analysis; for exam-
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ple, in the case study, all the direction parameters of 

network L are characterized by smaller standard 

deviations than the corresponding of network R: this 

is due to the nature of the deformations in the R 

region, that are practically homogeneous.  

With regard to the principal extension parame-

ters, the smaller correlations within each triangle 

are between 1  and 2 ; with regard to dilatation, 

maximum shear and the related angle, the same 

holds for  and . Generally, adjacent triangles 

show the highest correlations.  

All the algorithms have been implemented in a 

software package, written in standard C language. 

After some minor refinements it will become avail-

able to the scientific community. 
 
Acknowledgements 
 
L. Biagi’s work has been supported by the “Satellite 
Positioning Services for the e-government” Italian 
PRIN 2004 project. 
 
References 
 
Dermanis, A. & E. Livieratos (1983): Applications of De-

formation Analysis in Geodesy and Geodynamics. 
Reviews of Geophysics and Space Physics, vol. 51, 
no. 1, 41-50.  

Dermanis, A. and D. Rossikopoulos (1988): Modeling Alter-
natives in Four-Dimensional Geodesy. Proceedings 
of the International Symposium "Instrumentation, 

Theory and Analysis for Integrated Geodesy", So-
pron, Hungary, May 16-20, 1988, Vol. 2, 115-145. 

Dermanis, A. (1994): A method for the determination of 
crustal deformation parameters and their accuracy 
from distances. Journal of the Geodetic Society of 

Japan, vol. 40, no. 1, 17-32. 

Rossikopoulos, D. (2001): Modeling Alternatives in Defor-
mation Measurements. In: A. Carosio & H. Kutterer 
(eds.) “First International Symposium on Robust 

Statistics and Fuzzy Techniques in Geodesy and 

GIS”, ETH Zurich, Inst. of Geodesy and Photo-
grametry, No. 295. 

Dermanis, A and C. Kotsakis (2005): Estimating crustal 
deformation parameters from geodetic data: Review 
of existing methodologies, open problems and new 
challenges. In these proceedings. 

 




