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Abstract.. The problem of choosing an optimal refer-
ence system for the International Terrestrial Reference 
Frame (ITRF) is studied for both the rigorous solution 
which is a simultaneous stacking (removal of the ref-
erence system at each data epoch and implementation 
of a linear in time coordinate model) for all tech-
niques, as well as for the usual numerically conven-
ient separation into a set of individual stackings one 
for each technique and a final combination step for 
the derived initial coordinates and velocities. Two 
approaches are followed, an algebraic and a kinematic 
one. The algebraic approach implements the inner 
constraints, which minimize the sum of squares of the 
unknown parameters, as well as partial inner con-
straints, which minimize the sum of squares of a sub-
set of the unknown parameters. In the kinematical 
approach the optimal minimal constraints are derived 
by requiring the minimization of the apparent coordi-
nate variations: (a) with respect to the origin by im-
posing constant coordinates for the network barycen-
ter, (b) with respect to orientation by imposing zero 
relative angular momentum for the network points 
conceived as mass points with equal mass and (c) 
with respect to the scale by imposing constant mean 
quadratic size (involving the distances of stations 
from their barycenter). 

Key words: reference systems, ITRF, minimal con-
straints, inner constraints. 

1. Introduction 

The implementation of an International Terrestrial 
Reference System (ITRS) by means of an Interna-
tional Terrestrial Reference Frame (ITRF) is based on 
the utilization of time series of station coordinates 
referring to different but overlapping subnetworks, 
one from each particular space technique (VLBI, SLR, 
GPS, DORIS). The object is to construct an optimal 
set of initial coordinates 0ix  and velocities 

iv  for the 
stations 

iP  of the ITRF network which is the union of 
the subnetworks of all techniques.  The adoption of 
the simple model of linear evolution in time 

 0 0( ) ( )i i it t t= + −x x v  (1) 

(Altamimi et al., 2007, 2008) imposes a smooth tem-
poral variation in order to remove noise from the in-
put data, although systematic effects of various geo-
physical origins remain in the final ITRF residual 
series. With respect to the input coordinate data it is 
assumed that not only each technique refers to its own 
reference system but even each coordinate epoch re-
fers to a separate reference system. The aim of this 
last rather strong assumption is the removal of sys-
tematic coordinate variations due to the temporal in-
stability in the reference system definition. Thus the 
model for the observed coordinates , ( )T i ktx  of station 

iP  from technique T  at epoch kt  has the form    

 , , , 0( ) ( , , )T i k T i T k i it =x f p x v  (2) 

where in addition to the standard ITRF unknowns 0ix  
and iv , additional nuisance parameters appear, 
namely the transformation parameters ,T kp  from the 
ITRF reference system to the one for each technique 
T  and each coordinate input epoch kt .  In the most 
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general case these involve 3 displacement compo-
nents 1d , 2d , 3d , 3 rotation angles 1θ , 2θ , 3θ ,  and a 
scale factor 1 s+ . 

The determination of initial coordinates and veloci-
ties with simultaneous transformation of every epoch 
coordinates to a common reference system is usually 
referred to as “stacking” (Altamimi et a., 2007, 2008). 
Thus the ITRF formulation problem is in fact a simul-
taneous stacking for all the techniques, which in-
volves a very large number parameters, most of which 
are the parameters ,T kp , which are nuisance parame-
ters in the ITRF formulation but they are needed for 
transforming earth orientation parameters from each 
epoch and technique to the reference system of the 
ITRF. In order to cope with the computational burden 
of a simultaneous stacking a two step approach is 
used instead (Altamimi et a., 2007, 2008). In the first 
step a stacking is performed for each technique T  
separately producing initial coordinates ,0T ix  and ve-
locities ,T iv .  In the second “combination” step the 
initial velocities from all  techniques are combined to 
obtain the common ones of the ITRF. The model of 
the observations of the form 

 ,0 0( , , )T i i i T= xx f x v q , , 0( , , )T i i i T= vv f x v q  (3) 

involves the transformation parameters Tq  from the 
ITRF reference system to that of the one of each tech-
nique T  after its own stacking has been performed. 

The observation models for the simultaneous stack-
ing or the separate stackings and the combination 
have an inherent rank deficiency due to the lack of 
definition of the reference system. Indeed any change 
in the ITRF reference system by a particular trans-
formation is counterbalanced by a change of the trans-
formation parameters by the inverse transformation. If 
e.g. we write equation (2) in the form ( )T T=x p x  a 
coordinate transformation ( )T δ′ =x p x  with inverse  

1( )T δ− ′=x p x  leads to the model ( )T T ′ ′=x p x  where 
the transformation parameters change from p  to the 
ones ′p  implied by 1( ) ( ) ( )T T T δ−′ =p p p . 

Therefore the rank deficiency must be overcome by 
choosing an optimal reference system among all pos-
sible ones. This is typically done in classical rigid 
geodetic networks by introducing additional con-
straints on the parameters which resolve the “choice 
of datum” problem. The fact that we are dealing with 
deformable networks requires the choice of an opti-
mal reference system at each particular epoch among 
equivalent reference systems with coordinates con-

nected by transformations ( )( ) ( ) ( )t T t tδ′ =x p x  with 
parameters ( )tδp  which are smooth functions of time. 
A problem that arises in this respect is that general 
coordinate transformations ( )( )T tδ p  are not com-
patible with the linear time evolution model (1), since 
they transform coordinates  ( )i tx  into coordinates 

( )i t′x  which are not linear with respect to time t . 

2. Observation equations for model-
preserving and close to identity  

 transformations 

In order to overcome the above problems we follow 
the usual linearization procedure of replacing parame-
ters with their corrections to known approximate val-
ues and neglecting of second and higher order terms. 
We also assume that the coordinate transformations 
involved are “close to the identity” so that only first 
order terms in the small coordinate transformation 
parameters 1 2 3[ ]T

d d d=d , 1 2 3[ ]Tθ θ θ=θ  and s  are 
preserved. Since ( ) [ ]≈ − ×R θ I θ  a general coordinate 
transformation of the form (1 ) ( )s′ = + +x R θ x d  be-
comes [ ] s′ = + × + +x x x θ x d  or in terms of correc-
tions apδ = −x x x  to approximate coordinates 

 ap ap( ) ( ) [ ] ( ) ( ) ( )t t t s t tδ δ′ = + × + +x x x θ x d . (4) 

The model (1) with ap ap ap
0 0( ) ( )i i it t t= + −x x v  takes the 

form 0 0( ) ( )i i it t tδ δ δ= + −x x v  and application of (4) 
to the general equation (2) yields the linearized obser-
vation equations for the stacking problem 

ap ap
0 0 0 0( ) [ ]k k

i i k i k i i k k it t sδ δ δ= + − + + × + +x x v x x θ d e   

 (5) 

where the observational noise k

ie  has also been taken 
into account while ap

, ,( ) ( )k

i T i k T i kt tδ ≡ −x x x . Depend-
ence on the particular technique T  has been dropped, 
while the subscript k  denotes evaluation at epoch kt . 

The observation equations for the combination step 
are somewhat more involved. It can be shown (Al-
tamimi & Dermanis, 2012) that only transformations 
preserving the linear model form (1) must be used 
which are the ones with parameters of the form 

 0 0( ) ( )T T Tt t t= + −d d d� , (6a) 
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 0 0( ) ( )T T Tt t t= + −θ θ θ� , (6b) 

 0 0( ) ( )T T Ts t s t t s= + − � . (6c) 

With such linear in time parameter functions the ob-
servation equations for the combination step of the 
general form (3) become (Altamimi & Dermanis, 
2012) 

 
0

ap ap
0 0 0 0 0 0 0[ ]

T iT i i i T T i T
sδ δ= + × + + +

x
x x x θ x d e , (7a) 

 ap ap
0 0[ ]

TiTi i i T T i Tsδ δ= + × + + + vv v x θ x d e� �� . (7b) 

where ap
0 ,0 0T i T i iδ = −x x x  and ap

,Ti T i iδ = −v v v  are the 
reduced observations. 

3. Constraints for the introduction 
 of  the optimal reference system 

For the realization of the ITRF solution by either a 
simultaneous stacking  with observation equations (5) 
or a two-step approach with stacking per technique 
using equations (5) followed by combination using 
equations (7), it remains to determine the minimal 
constraints which define the optimal reference system 
without affecting the optimal network shape at any 
epoch, which is uniquely defined by the least squares 
adjustment principle. There are two possible ap-
proaches: The first is a kinematic one where the opti-
mality criterion is introduced directly by requiring 
that the variation of the coordinates is minimized in a 
specific way. The second is an algebraic one based on 
the inner constraints which minimize the sum of 
squares of all unknown parameters, or the partial in-
ner constraints where the sum of selected parameters 
is involved. The kinematic constraints follow by re-
quiring that the network barycenter remains constant  
and zero without loss of generality (definition of ori-
gin)  

 
1

( ) ( )B i

i

t t
N

≡ =∑x x 0 , (8a) 

that the relative kinetic energy of the network stations 
(visualized as mass points of equal mass) is mini-
mized or equivalently that the relative angular mo-
mentum is vanishing (definition of orientation) 

 ( ) [ ( ) ] ( )i

R i

i

d
t t t

dt
= × =∑

x
h x 0  (8b) 

and that the mean quadratic size S  of the network 
defined by 

 [ ] [ ]2 ( ) ( ) ( ) ( ) ( )
T

i B i B

i

S t t t t t= − −∑ x x x x  (8c) 

remains constant (definition of scale). 
The above optimality criteria lead to the following 

minimal constraints (Altamimi & Dermanis, 2012): 
For the definition of the system origin: 

 ap ap
0 0 0

1 1
i i

i iN N
δ = − ≡ −∑ ∑x x x ,  (9a) 

 ap ap1 1
i i

i iN N
δ = − ≡ −∑ ∑v v v  (9b) 

For the definition of the system orientation: 

 ap ap ap ap
0 0[ ] [ ]i i R i i

i i

δ× = − ≡ − ×∑ ∑x v h x v  (10b) 

For the definition of the system scale: 

 0 0 0( ) 0ap ap T

i i

i

δ− =∑ x x x  (11a) 

 0 0 0 0

1 1
( ) ( ) ( )ap ap T ap T ap ap T ap

i i i i

i iN N
δ− = −∑ ∑x x v x v x v  

 (11b) 

Among the above constraints (9a) and (11a) define 
origin and scale, respectively, at the original epoch, 
while (9b), (10b) and (11b) define the rates of origin, 
orientation and scale, respectively. Note that the con-
dition (8b) does not define the orientation at the initial 
epoch which must be also chosen by an additional 
constraint (to be borrowed from the next algebraic 
approach) in order to pick up a particular reference 
system orientation from an infinite number of dy-
namically equivalent ones satisfying (8b). Usually we 
choose ap

i =v 0  and if in addition approximate initial 
coordinates are chosen so that 0

ap =x 0  the constraints 
(9a), (9b), (10b), (11a), (11b) simplify, respectively, 
to  

 0i

i

δ =∑ x 0 ,  (12a) 
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 i

i

δ =∑ v 0  (12b) 

 ap
0[ ]i i

i

δ× =∑ x v 0  (13b) 

 0 0( ) 0ap T

i i

i

δ =∑ x x  (14a) 

 0( )ap T

i i

i

δ =∑ x v 0  (14b) 

The algebraic approach follows the same general 
lines as in the case of rigid networks (Meissl, 1965, 
1969, Blaha, 1971, Sillard and Boucher, 2001, Der-
manis, 2003), with time independent coordinates. 
When observable quantities y are related to coordi-
nate-related unknown parameters x  by a linear(ized) 
model =y Ax , then the design matrix A  has a rank 
deficiency equal to the number of coordinate trans-
formation parameters which change x  but leave y  
invariant (Grafarend and Schaffrin, 1976). A coordi-
nate transformation with parameters p  transforms the 
unknown x  into new ones ( )T′ =x p x , which depend 
on both x  and p  through a linear(ized) relation of the 
form ′ = +x x Ep . The derived matrix E  determines 
the additional inner constraints T =E x 0 , which yield 
the unknown values satisfying minT =x x . Splitting 
the unknowns and the inner constraints in two sets 

1 1 2 2
T T T= + =E x E x E x 0 , we obtain the partial inner 

constraints 1 1
T =E x 0 , which satisfy 1 1 minT =x x . 

In the stacking problem the unknowns are the ini-
tial coordinates and velocities 0[ ]T T T

i i i=a x v  for each 
station iP  and the transformation parameters 

[ ]T T T

k k k ks=z d θ . A coordinate change with para-
meters 0 0[ ]T T T T Tλ λ=p g ψ g ψ �� � , transforms the un-
knowns into 

 
ii i

′ = + =aa a E p  

 
ap ap
0 0

ap ap
0 0

[ ]

[ ]
i i

i

i i

 ×
= +  

× 

I x x 0 0 0
a p

0 0 0 I x x
 (15) 

 
kk k

′ = + =
z

z z E p  

 [ ]0( )k kt t= + − − −z I I p  (16) 

and the inner constraints   
1 1

i k

N M
T T

i k

i k= =

+ =∑ ∑a zE a E z 0  

become 

 0
1 1

N M

i k

i k

δ
= =

− =∑ ∑x d 0  (17a) 

 0
1 1

( )
N M

i k k

i k

t tδ
= =

− − =∑ ∑v d 0  (17b) 

 ap
0 0

1 1

[ ]
N M

i i k

i k

δ
= =

× + =∑ ∑x x θ 0  (18a) 

 ap
0 0

1 1

[ ] ( )
N M

i i k k

i k

t tδ
= =

× + − =∑ ∑x v θ 0  (18b) 

 ap
0 0

1 1

( ) 0
N M

T

i i k

i k

sδ
= =

− =∑ ∑x x  (19a) 

 ap
0 0

1 1

( ) ( ) 0
N M

T

i i k k

i k

t t sδ
= =

− − =∑ ∑x v . (19b) 

The partial inner constraints where only the parame-
ters 0iδ x , iδ =v 0  participate, are exactly the con-
straints (12a), (12b), (13b), (14a), (14b) plus the miss-
ing initial epoch orientation constraint (13a) which 
becomes 

 ap
0 0

1

[ ]
N

i i

i

δ
=

× =∑ x x 0  (13a) 

In the combination problem the unknowns are 
again initial coordinates and velocities 0[ ]T T T

i i i=a x v  
as well as the transformation parameters 

0 0 0[ ]T T T T T

T T T T T T Ts s=z d θ d θ�� � , which under a change of 
coordinate system transform according to 

 
TT T T

′ = + = −zz z E p z p  (20) 

and the inner constraints 
i T

T T

i Ti T
+ =∑ ∑a z

E a E z 0    

with 
ia

E  from (15) and 
T

= −
z

E I  become 

 0 0
1 1

N K

i T

i T

δ
= =

− =∑ ∑x d 0  (21a) 

 
1 1

N K

i T

i T

δ
= =

− =∑ ∑v d 0�  (21b) 
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 ap
0 0 0

1 1

[ ]
N K

i i T

i T

δ
= =

× + =∑ ∑x x θ 0  (22a) 

 ap
0

1 1

[ ]
N K

i i T

i T

δ
= =

× + =∑ ∑x v θ 0�  (22b) 

 ap
0 0 0

1 1

( ) 0
N K

T

i i T

i T

sδ
= =

− =∑ ∑x x  (23a) 

 ap
0

1 1

( ) 0
N K

T

i i T

i T

sδ
= =

− =∑ ∑x v � . (23b) 

The partial inner constraints involving only initial 
coordinates and velocities are the same as in the 
stacking problem. The partial inner constraints involv-
ing only transformation parameters become 

 0
1

K

T

T =

=∑d 0 ,  
1

K

T

T =

=∑d 0� , (24) 

 0
1

K

T

T =

=∑θ 0 , 
1

K

T

T =

=∑θ 0�  (25) 

 0
1

0
K

T

T

s
=

=∑ , 
1

0
K

T

T

s
=

=∑ �   (26) 

Of the above constraints (kinematic, inner, partial 
inner) only the ones related to the actual deficiencies 
of the reference system must be implemented. For 
example the origin and origin rate constraints do not 
apply to the SLR case where the geocenter is the 
known system origin. Since all techniques have their 
own scale, scale or scale rate constraints appear to be 
redundant. However since each technique has a dif-
ferent scale due to the different time unit realized 
through a different set of atomic clocks, these con-
straints should be incorporated into the combination 
step. 

3. Conclusions 

In comparison to inner or partial inner constraints the 
kinematic minimal constraints have the advantage of 
being independent of the approximate values of the 
parameters used in the linearization of the observation 
equations. They involve only station related parame-
ters (initial coordinates and velocities), while inner 
constrains involve both station and reference system 

transformation parameters. Partial inner constraints 
may be formulated for either station or transformation 
parameters. The ones for station parameters may co-
incide with the kinematical ones (and thus share their 
independence from approximate values) if care is 
taken so that the used approximate values of veloci-
ties are zero and the approximate values of the initial 
coordinates have zero mean. 
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