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Summary 
 

The method of kriging is critically examined from the 

viewpoint of the classical Wiener-Kolmogorov predic-

tion theory for random fields, as well as from the 

viewpoint of the finite-dimensional statistical random 

effects model. It is shown that ordinary kriging is iden-

tical with the best homogeneous linear unbiased pre-

diction and that its main characteristic is not the unbi-

ased prediction but rather its homogeneous linear 

character (a strictly linear combination of the observa-

tions without an additional constant). The last argu-

ment is emphasized by deriving biased kriging on the 

basis of best homogeneous linear prediction which is 

biased.  

 

 

1. Introduction 
 

Kriging is a method developed in the beginning of the 

50s by the mining engineer Krige (1951) in order to 

predict the ore content of a mining site using isolated 

measurements at particular points. Ore content is 

modeled as a random field, i.e. a stochastic function in 

three dimensions. The more general character of 

kriging as a method of prediction in relation to an un-

derlying random field has been recognized by 

Matheron (1962) who studied the deep mathematical 

problems stemming from the infinite-dimensional 

character of the unknown random field. Thus the 

method found wider application in other fields such as 

hydrology. However similar prediction problems for 

random fields or stochastic processes (a standard 

term for functions of time) had already been studied 

independently by Kolmogorov (1941) and (1949), lead-

ing to what may be called a Wiener-Kolmogorov the-

ory for prediction in random functions.  

In geodesy a similar method has been introduced by 

Moritz (Heiskanen & Moritz, 1967) for prediction re-

lated to the gravity field of the earth. The method has 

been deeply analyzed and generalized by Krarup 

(1969), who in addition showed its relation to the de-

terministic problem of interpolation for the harmonic 

function of the gravitational potential of the earth, 

which belongs to a Hilbert space with reproducing 

kernel. The relevant method has been named “collo-

cation” and its deterministic aspects have been fur-

ther studied by Dermanis (1976), Sansò (1978) and 

others. 

Despite the presence of an underlying infinite-

dimensional unknown function in any application, the 

problem can be reduced to a classical problem of sto-

chastic prediction with finite dimensions in the frame-

work of a so called “random effects model”, since the 

number of data is finite and the problem of predicting 

the unknown random field can be reduced to that of 

predicting its value at any particular point of its do-

main of definition. Moreover the method can be gen-

eralized to the use of quantities other than point val-

ues for both data and predicted values, which must be 

however the values of continuous (bounded) linear 

functionals (mappings from a function to a real num-

ber) acting on the unknown field. 

Despite its similarities with the Wiener-Kolmogorov 

prediction, kriging differs in an important aspect: it 

uses the variogram function instead of the covariance 

function of the relevant field. From a theoretical point 

of view this choice extends the applicability of kriging 

to random fields which the variogram is defined while 

the covariance function does not. This wider field of 

application is however insignificant from the view-

point of practical applications. More important is the 

applicability of kriging to cases where the random field 

has unknown but constant mean function, while other 

methods require knowledge of the relevant constant 

value.  

We shall limit ourselves here to the so called “ordinary 

kriging” with unknown constant mean function. “Uni-

versal kriging” where the unknown mean function is 

modeled as a linear combination of known (base) 



function with unknown coefficients can also be 

treated in the framework of the classical finite-

dimensional estimation-prediction statistical method-

ology where the so called “mixed effects model” is 

used. Nevertheless the essence of the comparisons 

and conclusions that will be drawn here does not need 

the generalization of universal kriging, which leads to 

somewhat more complicated algorithms which usually 

implement the variogram instead of the covariance 

function. More drastic is the generalization of the “in-

trinsic kriging”, which leads to solutions independent 

of the unknown mean value function by utilizing the 

so called “generalized covariance function”. Finally a 

recent generalization is the “generalized kriging” of 

Reguzzoni et al. (2005), which (as already done for 

geodetic collocation) allows the use of almost any real 

values related to the unknown random field, either as 

input data or as predicted quantities, provided that 

they can be expressed as continuous functionals of 

the underlying unknown field. On the basis of the 

comparison in the framework of the statistical random 

effects model still another generalization is possible, 

the one of “biased kriging” already proposed by Der-

manis & Sansò (2007). 

 

 

2. Prediction with the Random Effects 
Model 

 

The random effects model is a linear model of the 

form = +y Gs v , where s  is a vector of rndom vari-

ables with known mean values { }E =s m  and known 

covariance matrix {( )( ) }
T

E − − = sss m s m C , v  is the 

vector of the observational errors with { }E =v 0  and 

{ }
T

E = vvv C , G  is a known matrix and y  is the ran-

dom vector of the observations for which a sample 

outcome is known as the result of specific measure-

ments. The problem is the prediction (i.e. the estima-

tion of the corresponding sample value) of any ran-

dom variable s′  with known mean value { }E s m′ ′= , 

which is correlated with the model random variables, 

through the known (cross)covariance matrix 

{( )( )} sE s m ′
′ ′− − = ss m c . The prediction is character-

ized as optimal (best) when it satisfies the criterion of 

minimizing the mean square prediction error 
2

{ } minE ε = , where ( )s s′ ′= y� �  is the prediction and 

s sε ′ ′= −�  prediction error. The prediction itself is a 

function ( )s s′ ′= y� �  of the known observations y , 

which is typically linear with two possible values the 

homogeneous (hom) linear one 
T

s′ = d y  and the non-

homogeneous (inhom) one 
T

s k′ = +d y . Predictions 

are further distinguished into unbiased ones for which 

{ } { }E s E s′ ′=�  and biased ones for which this addi-

tional restriction does not hold. On the basis of the 

above choices we may distinguish between four types 

of optimal linear predictions: 

- inhomBLUP = inhomogeneous Best Linear Unbiased  

- homBLUP = homogeneous Best Linear Unbiased 

Prediction 

- inhomBLΙP = inhomogeneous Best Linear Prediction  

- homBLΙP = homogeneous Best Linear Prediction  

The optimal values of the coefficients d  or d  and k  

are determined by minimizing the function 
2

{ } ( )E ε ϕ= d  or 
2

{ } ( , )E kε ϕ= d , respectively, either 

directly or under the condition 
T

m′=d Gm  or 
T

k m′+ =d Gm  for unbiased prediction. Based on the 

resulting values of d  and k  we have the following 

prediction equations:  

 

inhomBLUP = inhomBLIP:  

 
1

( ) ( )
T T

ss m
−

′
′ ′= + + −s ss vc GC G C y Gm�  

 

homBLUP:  

 

( )1
( )

T T T

ss mα α−
′

′ ′= + + −s ss vc G GC G C y Gm� ,  

 

 

1

1

( )

( )

T T T

T T T
α

−

−

+
=

+
ss v

ss v

m G GC G C y

m G GC G C Gm
 (2) 

 

homBLIP:  

 

( )1
( )

T T T

ss mα α−
′

′ ′= + + −s ss vc G GC G C y Gm� , 

 

 

1

1

( )

1 ( )

T T T

T T T
α

−

−

+
=

+ +
ss v

ss v

m G GC G C y

m G GC G C Gm
 (3) 

 

We notice that the above predictors have the same 

form where only the parameter α  differs, which can 

be taken as 1α =  for the inhomBLUP = inhomBLIP 

prediction. In the case of zero mean values ( 0im = , 

0m′ = ) all the above predictions coincide taking the 

common form 
1

( )
T T T

ss
−

′
′ = +s ss vc G GC G C y� . In the 

case of non-homogeneous prediction the presence of 

the constant term k  makes the bias disappear and 

the relevant prediction is unbiased even when this is 

not an a priori requirement, so that biased and unbi-

ased predictions coincide. Homogeneous predictions 

have been proposed by Schaffrin (see e.g.. Grafrend & 

Schaffrin, 1993) as “robust” alternatives to the stan-

dard non-homogeneous ones since the former multi-

ply the mean value with a factor α , which in a certain 

sense offers some type of partial protection against 

wrong assumptions about the mean values. Similar 

somewhat generalized expressions have been pro-

posed by Dermanis (1987) in the framework of stan-



dard non-homogeneous prediction by including the 

unknown factor in the original model, either as a de-

terministic parameter or as a stochastic one with 

mean value 1 and known a priori variance. 

 

 

3. Application to Random Field Prediction 
 

In the case of an unknown random field ( )u x , where 

e.g. [ ]
T

x y z=x  is the vector of Cartesian coordinates, 

the observations y  have the form ( )i i iy u v= +x , 

1,2,...,i n= , i.e. the values ( )iu x  of the field at n  

points 
ix  are observed with additional random obser-

vational errors 
iv , while it is required to provide a 

prediction �( )u u≡x x�  of the value of the field ( )u x  at 

any other point x . We assume that the random field 

has constant mean value function ( ) { ( )}m E u µ≡ =x x  

and known covariance function  

( , ) {[ ( ) ][ ( ) ]}C E u uµ µ′ ′≡ − −x x x x . 

In order to compare the above results with kriging we 

have assumed a constant mean value ( )m µ=x , an 

assumption which becomes necessary if we further 

assume that the random field is homogeneous, i.e. 

that ( , ) ( , )C C′ ′= + +x x x h x h  for any displacement h , 

in which case (choosing = −h x ) the covariance func-

tion becomes a function of only the difference ′ −x x , 

thus having the form ( )C ′ −x x . 

Setting ( )i iu u= x  and ( )( ), ( )ik i kC C u u= x x ,  

( )( ), ( )i ic C u u= x x , we arrive at the random effects 

model = +y u v , which corresponds to the more gen-

eral model = +y Gs v  with =G I , =s u ,  

( )s u u′ = ≡ xx , =ssC C , 
s′ =sc c , m µ′ = , µ=m s , 

where [1 1 ... 1]
T=s . With these replacements the 

relevant predictions become 

 

inhomBLUP = inhomBLIP:  

 
1

( ) ( )
T

u µ µ−= + + −x vc C C y s�  (4) 

 

homBLUP: 

 

( )1
( )

T
u α µ α µ−= + + −x vc C C y s� , 

 

 

1

1

( )1

( )

T

T
α

µ

−

−

+
=

+
v

v

s C C y

s C C s
 (5) 

 

homBLIP:  

 

( )1
( )

T
u α µ α µ−= + + −x vc C C y s� , 

 

 

1

2 1

( )

1 ( )

T

T

µ
α

µ

−

−

+
=

+ +
v

v

s C C y

s C C s
 (6) 

 

 

4. Κriging as Best Linear Homogeneous 
Unbiased Prediction 

 

As already pointed out by Dermanis (1984), kriging 

corresponds to best linear homogeneous prediction 

(homBLUP), while geodetic collocation corresponds to 

best linear inhomogeneous unbiased prediction (in-

homBLUP). Therefore what distinguishes kriging is its 

homogeneous linear character rather than its unbi-

ased one. In order to prove this statement we must 

translate the relevant result from the “language” of 

the covariance function to the one of the variogram, 

which is defined as 

 

21
( , ) {[ ( ) ( )] }

2
E u uγ ′ ′= −x x x x  (7) 

 

In kriging the so called “intrinsic” hypothesis holds, 

namely that the variogram is a function of only the 

displacement ′= −h x x , which corresponds to the 

hypothesis of a homogeneous field with covariance 

( , ) ( )C C′ ′= −x x x x , so that 

 
21

2
( ) {[ ( ) ( )] }E u uγ = + − =h x h x  

 
2 21 1

2 2
{ ( ) } { ( ) ( )} { ( ) }E u E u u E u= + − + + =x h x h x x  

 

 ( ) ( )C C= −0 h  (8) 

  

Under the intrinsic hypothesis the mean value func-

tion is necessarily constant. Introducing the variogram 

related matrices Γ , γ  with elements ( )ik i kγΓ = −x x , 

( )i iγ= −γ x x , respectively and setting 
0

( )C C≡ 0 , we 

obtain the transformation relations  

0

T
C= −C ss Γ , 

0
C= −c s γ  

as well as their inverse ones  

0

T
C= −Γ ss C , 

0
C= −γ s c . 

In order to show the correspondence of kriging with 

the best linear homogeneous unbiased prediction we 

will depart from the well known “kriging system” of 

the form  

 

0 1
T

k

−     
=     

     

vΓ C s λ γ

s
 (9) 

 

or explicitly 

 

( ) k− + =vΓ C λ s γ , 1
T =s λ , (10) 

 



which solved for λ  leads to the kriging prediction 

ˆ( )
T

u =x λ y . Replacing 
0

T
C= −Γ ss C , 

0
C= −γ s c , the 

kriging system becomes 1
T =s λ  and  

0 0
( ) ( )

T T
C k C k− − + = − + + =v vss C C λ s ss λ C C λ s  

0 0
( )C k C= − + + = −vs C C λ s s c , or simply 

 

( ) k+ − =vC C λ s c , 1
T =s λ . (11) 

 

The first relation gives 
1

( ) ( )k
−= + +vλ C C c s , which 

replaced in the second one yields  

1
( ) ( )

T T
k

−= + + =vs λ s C C c s  

 
1 1

( ) ( ) 1
T T

k
− −= + + + =v vs C C c s C C s , 

so that 

1

1

1 ( )

( )

T

T
k

−

−

− +
=

+
v

v

s C C c

s C C s
. With this value of k  the 

coefficients λ  become  

 
1

( ) ( )k
−= + + =vλ C C c s  

 
1

1 1

1

1 ( )
( ) ( )

( )

T

T

−
− −

−

− +
= + + +

+
v

v v

v

s C C c
C C c C C s

s C C s
 (12) 

 

and the corresponding prediction ˆ( )
T

u =x λ y  takes 

the form 

 
1

1 1

1

1 ( )
ˆ( ) ( ) ( )

( )

T

T T

T
u

−
− −

−

− +
= + + + =

+
v

v v

v

s C C c
x c C C y s C C y

s C C s

1

1

1

( )
( )

( )

T

T

T

−
−

−

+
= + + −

+
v

v

v

s C C y
c C C y

s C C s
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( )

( )

T

T

T

−
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−

+
− +

+
v

v

v

s C C y
c C C s

s C C s
 

1 1

1

1 1

( ) ( )
( )

( ) ( )

T T

T

T T

− −
−

− −

 + +
= + + − 

+ + 

v v

v

v v

s C C y s C C y
c C C y s

s C C s s C C s
 

 (13) 

 

or simply 

 
1ˆ( ) ( ) ( )

T
u β β−= + + −vx c C C y s , 

 

 

1

1

( )

( )

T

T
β

−

−

+
=

+
v

v

s C C y

s C C s
. (14) 

 

Comparing the above relation with equation (5) for 

the best linear homogeneous prediction, it is easy to 

certify that the two methods coincide if we recognize 

that β α µ= . Therefore ordinary kriging is identical 

to best linear homogeneous prediction applied to the 

case of random fields having a covariance function. 

This identification is not an absolute one for two rea-

sons:  

(a) Kriging is somewhat more general because it ap-

plies also to random fields having a variogram but 

no covariance function..  

(b) Kriging does not require knowledge of the con-

stant mean value µ  of the relevant random field.  

On first site the second of the above remarks appears 

not to be valid because the presence of µ  in equation 

(5) is not a real one, a fact that is verified by the alter-

native relation (14) where the product  α µ  has been 

replaced by the single parameter β α µ= . However 

knowledge of the value µ  is in fact related not to the 

realization of the prediction but rather to the ap-

proximate determination of the variogram ( )γ h  or 

the covariance function ( )C h , in each case, on the 

basis of the corresponding relations 

 

21
( ) {[ ( ) ( )] }

2
E u uγ = − +h x x h  (15) 

 

( ) {[ ( ) ][ ( ) ]}C E u uµ µ= − + −h x x h  (16) 

 

Such approximations are based on the separation of 

the domain of definition D  in covering independent 

subsets 
mD  (

mD D∪ = , 
m mD D ′∩ = ∅  for m m′ ≠ ) 

and the approximation of ( )γ h  or ( )C h  by step func-

tions with constant values in every subset 
mD  

( ( ) ,m mDγ γ= ∀ ∈h h  and ( ) ,m mC C D= ∀ ∈h h ). As-

suming uncorrelated random observation errors with 

the same variance 
2

{ }i k v ikE v v σ δ= , the values 
mγ  or 

mC  are obtained from the values of the observations 

( )i i iy u v= +x  using the relations 

 

2 21
ˆ2 2 ( )

k i m

m v i k

Dm

y y
N

γ σ
− ∈

+ = −∑
x x

 (17) 

 

1ˆ ( )( )

k i m

m i k

Dm

C y y
N

µ µ
− ∈

= − −∑
x x

 (18) 

 

Where mN  the number of point pairs with 

k i mD− ∈x x . The relevant estimates are unbiased, i.e. 

ˆ{ }m mE γ γ=  and ˆ{ }m mE C C= . For the variogram 

( ) 0γ =0  by definition, while the corresponding value 

0
( )C C= 0  is estimated using 

 

2 2

0

1ˆ ( )

i

v i

m

C y
N

σ µ+ = −∑
x

 (19) 

 

with 
0 0

ˆ{ }E C C= . 

 



5. Biased Kriging 
 

In order to emphasize that the main characteristic of 

kriging is that of been a homogeneous linear predic-

tion and not that of being an unbiased one, we will 

“translate” the (biased) best linear homogeneous pre-

diction (6) into the “language” of the variogram using 

the transforming relations 
0

T
C= −C ss Γ , 

0
C= −c s γ . 

Replacing the matrices C  and c  of equation (6) with 

the above values we arrive (after some extensive al-

gebraic manipulation) to the relation for biased kriging 

 

( )1ˆ( ) ( )
T

vu β β−= + − −x γ Γ C y s , 

 

 

1

1

( )

( ) 1

T

v

T

v

H

H
β

−

−

−
=

− −

s Γ C y

s Γ C s
 (20) 

 

which contains instead of the mean value µ , the pa-

rameter 
2

0
H C µ≡ + . Although H  contains the 

mean value µ , it can be estimated directly from the 

observations using the relation 

 

2 2

0

1ˆˆ

i

v i

m

H C y
N

σ= + = ∑
x

 (21) 

 

where ˆ{ }E H H= , i.e. we have an unbiased estimate. 
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